

Isolation and characterisation of larvicidal compounds from Commiphora Merkeri Engl. exudate against Aedes aegypti and Anopheles gambiae

Baraka Samwel¹*, Ester Innocent², Francis Machumi¹, William N. Kisinza³, Matthias Heydenreich⁴

¹Department of Natural Products, Institute of Traditional Medicines, Muhimbili University of Health and Allied Sciences

²Department of Biological and Pre-clinical Studies, Institute of Traditional Medicines, Muhimbili University of Health and Allied Sciences,

³Amani Research Centre, National Institute for Medical Research,

⁴Institute of Chemistry, University of Potsdam, Germany

*barakandiege@yahoo.co.uk

Introduction

Mosquito control methods have been targeting adult stage of the life cycle mainly by using synthetic insecticides in the form of indoor residual spraying (IRS), long lasting insecticide treated nets (LLINs), insect repellent and deterrents [1,2]. However, an application of insecticides to mosquito at their larvae and pupae stage is favorable due to restricted movements of mosquito at these stages. Plants are essential sources of phytochemicals, some of which show insecticidal properties.

Objectives

The current study was to isolate and evaluate larvicidal compounds from *Commiphora merkeri* exudate against *Aedes aegypti* L. and *Anopheles gambiae* s.s

Methods

Plant material
Extraction and concentration

Evaluation for larvicidal activity
Isolation of compounds

Larvicidal activity of compounds

Results

The exudate exhibited larvicidal activity with LC₅₀ of 34.59 and 41.07 μ g/mL against *Ae. aegypti* and *An. gambiae* larvae, respectively.

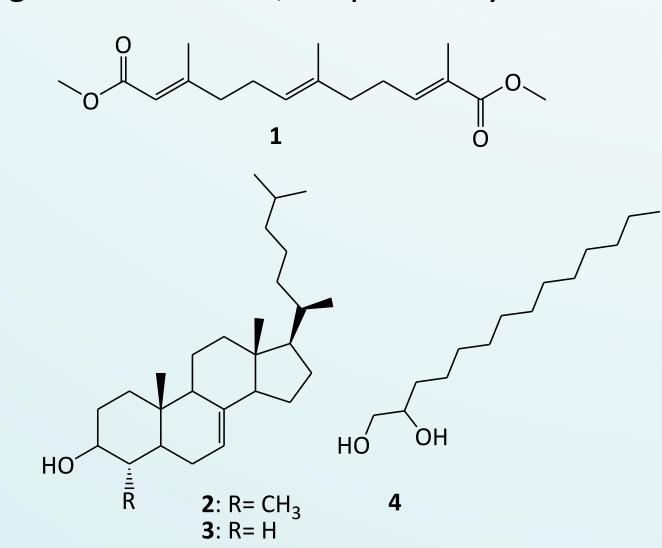


Figure 1: Compounds isolated from *C. merkeri* exudate

Chromatographic separation of exudate led to isolation of Four compounds, (2E,6E,10E)-1,12-dimethoxyl-2,6,10-farnesen-1,12-dione (1), 4α -methyl-cholest-7-en-3 β -ol (2), cholest-7-en-3 β -ol (3) and tetradecane-1, 2-diol (4). Sterols, 2 and 3 exhibited activity with LC₅₀ values of 263.52, 377.67 µg/mL and 224.16, 264.42 µg/mL against *Ae. aegypti* and *An. gambiae* larvae, respectively. Compounds, 1 and 4 had weak activity (LC₅₀ > 1000 µg/mL).

In addition, there were no statistically significant differences ($\geq 95\%$) in the mortalities exhibited by compounds **2** and **3**. This study suggests that the exudate of *C. merkeri* could be potential for control of mosquito larvae.

Table 1: Mosquito larvicidal activity of exudate and isolated compounds

	LC ₅₀ (95% CI) μg/mL		
Sample/Co mpound	Ae. aegypti	An. Gambiae	Cx. quinquefasciatus
After 24 h of	fexposure		
Exudate 1	34.59 (30.04-39.82) >1000	41.07 (31.83-53.01) >1000	36.54 (27.89-47.88) >1000
2	>1000	>1000	>1000
3	>1000	>1000	>1000
4	>1000	>1000	>1000
After 48 h of	fexposure		
Exudate 1	26.51 (26.00-27.03) >1000	37.87 (30.44-47.12) >1000	31.56 (24.35-40.89) >1000
2	224.16 (180.43- 278.49)	263.52(214.66- 323.51)	224.16 (180.43- 278.49)
3	264.42 (210.75- 331.75)	377.67(292.40- 487.82)	264.42 (210.75- 331.75)
4	>1000	>1000	>1000

Conclusions

The *C. merkeri* exudate could be useful for managing populations of *An. gambiae, Ae. aegypti* and *Cx. quinquefasciatus*.

Acknowledgment

Authors are grateful to the German Academic Exchange Service (DAAD) for funding, Muhimbili University of Health and Allied Sciences (MUHAS) for providing laboratory space for the research work, University of Potsdam through Institute of Chemistry, for research space and analysis of NMR and MS spectra.

Bibliography

- [1] C. Lengeler, "Insecticide-treated bed nets and curtains for preventing malaria," *Cochrane Database Syst. Rev.* (2)., no. 2, 2004.
- [2] B. Samwel, E. Innocent, and P. Masimba, "Larvicidal Activity of Metarhizium anisopliae and Annona squamosa Leaf Extract against Culex quinquefasciatus and Anopheles gambiae Larvae," *J. Appl. Life Sci. Int.*, vol. 3, no. 4, pp. 169–176, 2015.